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Abstract. We calculate the effective potential for a gaugedφ6 scalar field theory with
minimal coupling to gravity, in(2+ 1)-dimensional curved spacetime using mean-field-theory
approximation techniques. Gauge independence of the off-shell effective action is ensured by
working within the framework of the Vilkovisky–DeWitt approach.

1. Introduction

It has long been of interest to study effective actions in quantum field theory as these tell
us something of the structure of the vacuum which is probed by an external source [1, 2].

The formalism is useful, in particular, in the inflationary universe scenario, since the
global minimum of the effective potential gives the exact ground-state energy of the system.
It is also useful while studying particle creation in specific curved spacetimes, since the trace
anomaly can be derived from the effective action [3]. The effective action concept has also
found applications in Adler’s induced gravity approach to quantum gravity [4] (see also [5]
in this connection).

A feature of the conventional definition of the effective action is that it is gauge
dependent off the mass shell. A few years ago Vilkovisky [6] and DeWitt [7, 8] gave
a construction for the effective action which is gauge invariant, reparametrization invariant
and gauge condition independent, even off the mass shell. It has been shown by Burgess and
Kunstatter [9] that the Vilkovisky–DeWitt effective action is a member of a larger family
of effective actions which are interpreted as the minimum energy of the field theory. They
conclude that all the members of the family may be used to probe the vacuum field states
with the same accuracy, the Vilkovisky–DeWitt effective action only producing simpler
calculations.

Even if the effective action is gauge-independent off-shell, two other features persist—
convexity, and the problem of having in hand a perturbative loop expansion which is ill
defined for situations involving spontaneous breakdown of symmetry. The problem of
convexity relates to the fact that whereas the exact effective potential is convex [10], which
means that even for a theory with symmetry breaking at the classical level the exact effective
potential can never have a double-well shape, its perturbative expansion is, however, neither
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convex nor real. This leads to an unsatisfactory situation as the exact and the perturbatively
expanded effective potentials show different behaviour. The convexity problem has been
treated by several authors, including O’Raifeartaigh and Parravicini [11] and Stevenson [12],
the latter using the Gaussian effective potential approach, and more recently by Balakrishnan
and Moss [13] who applied their formalism to the standard electroweak theory at high
temperatures.

In (2+ 1) dimensions, in flat spacetime, several interesting phenomena, such as the
quantum Hall effect and high-temperature superconductivity, all involving planar gauge
theoretic dynamics have been studied. The most general renormalizable relativistic scalar
field theory in this spacetime is aφ6 theory [14]. In curved(2+ 1)-dimensional spacetime,
Einstein’s theory of gravitation exhibits several unexpected features [15, 16]. As discussed
in [15], in these dimensions the gravitational field has no dynamical degrees of freedom
and one can obtain a quantum theory of the vacuum gravitational field only by coupling the
metric to a source field having its own dynamical degrees of freedom.

In view of this, it is interesting to calculate the effective potential for a quantum field
theory in these dimensions in order to obtain the quantum corrections to the classical field
theory in the presence of gravity. The purpose of our paper is to study gaugedφ6 theory
in a three-dimensional curved spacetime. Our aim is to include contributions from all
the saddle points in the effective potential, and to do so in a gauge-independent manner.
We consider only the case where the scalar fieldφ is coupled minimally to gravity and
calculate the effective potential by making an expansion in powers of the curvature. We
use zeta-function regularization to obtain a finite result.

Standard calculations of the effective potential making an expansion about only one
saddle point suffer from the drawback that the naive loop expansion fails in the case of
theories with broken symmetry. In a series of papers, Bender, Cooper, Guralnik and others
[17] have developed a mean-field-theory approximation method for performing perturbative
calculations leading to a well defined loop expansion for broken symmetric theories.

Their idea, essentially, is to introduce an auxiliary composite field and to rewrite the
classical Lagrangian using the auxiliary field. They define their effective action as a double
Legendre transform with two sources—one coupled to the expectation value of the scalar
field and the other coupled to the expectation value of the auxiliary composite field. Their
technique consists of performing the functional integration over all the scalar fieldsφ

including all the saddle points, keepingφ2 fixed. This gives a well defined perturbative
loop expansion. The expansion is made in powers of a small parameterε, and finally this
value ofε is set to unity.

Although we employ this mean-field technique to calculate the one-loop effective
potential, our procedure differs in certain small details. In order to maintain gauge condition
independence throughout, even off the mass shell, we work within the framework of the
covariant Vilkovisky–DeWitt approach.

2. Calculation of the effective potential

We begin with the classical action:

S =
∫

dvx

{
(Dµφ)

†(Dµφ)+m2φ†φ + λ
6
(φ†φ)

2+ η

90
(φ†φ)

3
}
. (1)

Here, dvx = √g d3x is the invariant spacetime volume element andDµ = ∇µ+ieAµ denotes
the covariant derivative. The signature of the spacetime has been taken to be Riemannian.
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We prefer to work with the polar coordinate parametrization for the complex scalar fieldφ

φ(x) = 1√
2
ρ(x) eiθ(x) (2)

so that the action can then be expressed in terms of theρ andθ fields. The field redefinition
[18]

Aµ(x) = Bµ(x)− 1

e
∂µθ(x) (3)

which some authors refer to as the ‘unitary gauge choice’, then eliminates theθ(x) field
appearing in the resulting action and reduces the gauge theory to a non-gauge theory

S =
∫

dvx

{
1

4
F̄µνF̄

µν + 1

2
ρ(−�+m2+ e2BµB

µ)ρ + λ

4!
ρ4+ η

6!
ρ6

}
(4)

where F̄µν = ∂µBν − ∂νBµ. Following the mean-field approach of Benderet al [17], we
introduce an auxiliary composite fieldχ(x) coupled to another external sourceK(x). In
terms of the fieldχ , the classical action can be rewritten as

S =
∫

dvx

{
1

2
ρ

[
−�+m2+ e2BµB

µ + χ + 3

10

η

λ2
χ2

]
ρ

+1

4
F̄µνF̄

µν − 3

2λ
χ2− 3

5

η

λ3
χ3

}
(5)

because the Euler–Lagrange equation forχ , δL/δχ = 0, yieldsχ = λρ2/6 for the positive
root of χ , and substituting this value ofχ in (5) gives us back (4). The fieldρ(x) now
occurs in the Lagrangian (5) in powers no higher than quadratic.

The effective action0eff[φ̄, χ̄ ] is now defined as the double Legendre transform

0eff[φ̄, χ̄ ] = −h̄ lnZ[J,K] −
∫

dvx J (x)φ̄(x)−
∫

dvx K(x)χ̄(x) (6)

where the partition functionZ[J,K] is defined as

Z[J,K] =
∫

dµ[φ] dµ[χ ] exp

{
− 1

h̄

[
S[φ, χ ] +

∫
dvx(J (x)φ(x)+K(x)χ(x))

]}
. (7)

The expectation values̄φ and χ̄ are given by

−h̄ δ lnZ[J,K]

δJ (x)
= φ̄(x) − h̄ δ lnZ[J,K]

δK(x)
= χ̄(x) (8)

and the external sourcesJ (x) andK(x) are defined by the effective field equations:

δ0eff

δφ̄(x)
= −J (x) δ0eff

δχ̄(x)
= −K(x). (9)

In order to show the equivalence up to zeroth order inεh̄ of the theories defined by (5)
and (4), we now rewrite the partition function (7) as

Z =
∫

dµ[φ] exp

{
− 1

εh̄

(
Sa[φ] +

∫
dvx Jφ

)}∫
dχ exp

{
− 1

εh̄
Q(χ, ρ)

}
(10)

where

Sa[φ] =
∫

dvx

{
1

4
F̄µνF̄

µν + 1

2
ρ(−�+m2+ e2BµB

µ)ρ

}
Q[ρ, χ ] =

∫
dvx

{
− 3

2λ
χ2− 3η

5λ3
χ3+ 1

2
ρ2χ + 3η

20λ2
χ2ρ2+Kχ

}
. (11)
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We can Taylor expandQ(ρ, χ) about valuesχ± of χ

Q[ρ, χ ] = Q[ρ, χ±] + δQ
δχ

∣∣∣∣
χ±
(χ − χ±)+ 1

2

δ2Q

δχ2

∣∣∣∣
χ±
(χ − χ±)2+ 1

6

δ3Q

δχ3

∣∣∣∣
χ±
(χ − χ±)3+· · ·

(12)

whereχ± satisfies the stationarity condition

δQ

δχ
= 0 (13)

which has the roots

χ± = 5λ2

6η

(
ηρ2

10λ
− 1

)
± 1

2

[(
λρ2

6
+ 5λ2

3η

)2

+ 20λ3K

9η

]1/2

. (14)

Choosing the positive rootχ+ gives

Q[ρ, χ ] = ηρ6

6!
+ λ

4

4!
+ 5λ3

18η

(
λρ2

6
+ 5λ2

3η

)−1

K2+ λρ
2

6
K

− 9η

5λ3

[
1

4

(
λρ2

6
+ 5λ2

3η

)2

+ 5λ3K

9η

]1/2

(χ − χ+)2− 3η

5λ3
(χ − χ+)3+ · · · .

(15)

To get this, we have assumed that

20λ3K

9η

(
λρ2

6
+ 5λ2

3η

)−2

� 1. (16)

If we neglect terms which are quadratic and higher order inK in comparison with those
linear inK by making use of the assumption (16) made above, we obtain after performing
the shiftχ − χ+ → χ in the field variableχ

Z[J,K] =
∫

dµ[ρ] exp

{
− 1

εh̄

(
S4+

∫
dvx

[
Jρ + λρ

2

6
K

])}
×
∫

dµ[χ ] exp

{
− 1

εh̄

∫
dvx

{
− 9η

5λ3

[
1

4

(
λρ2

6
+ 5λ2

3η

)2

+ 5λ3K

9η

]1/2

χ2

− 3η

5λ3
χ3+ · · ·

}}
(17)

whereS4 is the classical actionS defined in (4).
Setting the sourceK to zero leads to the result

Z[J,K] =
∫

dµ[ρ] exp

{
− 1

εh̄

(
S4+

∫
dvx Jρ

)}
×
∫

dµ[χ ]

× exp

{
− 1

εh̄

∫
dvx

[
− 9η

10λ3

(
λρ2

6
+ 5λ2

3η

)
χ2− 3η

5λ3
χ3+ · · ·

]}
. (18)

Thus to lowest (zeroth) order inεh̄, the originalφ6 theory (with the Lagrangian (4)) is
obtained and the Lagrangian in (5) is equivalent to (4). Theχ integral contributes to the
next order in theεh̄ expansion.
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The effective action defined in (6) bears a slight resemblance to that defined by Cornwall
et al [19] for composite fields, but in fact differs from it, and so do the field equations (9)
following from it. Equation (6) can be rewritten as

0eff[φ̄, χ̄ ] = −h̄ ln
∫

dµ[φ] dµ[χ ]

× exp

{
− 1

h̄

[
S[φ, χ ] +

∫
dvx J (φ − φ̄)+

∫
dvx K(χ − χ̄)

]}
. (19)

The procedure now consists of performing the integration over all the scalar field
configurationsφ, including all saddle points, keepingχ fixed. The resulting quantityF [χ ]
is replaced by(1/ε)F [χ ], where ε is a small parameter (ε > 0), and Laplace’s method
is used to evaluate the integral by performing an expansion of the integrand as a series in
powers ofε. At the end of the calculations,ε is set to 1. The effective action can thus be
calculated from

0eff[φ̄, χ̄ ] = −εh̄ ln
∫

dχ e−(1/ε)F [χ ] (20)

to different orders in the ¯h loop expansion:

0eff =
∞∑
n=0

h̄n0(n). (21)

We find it suitable to adopt the Vilkovisky–DeWitt procedure, since we have used polar
coordinate parametrization for the fieldsφ. It can be shown that different parametrizations
for the fields lead to different results for the effective action if sufficient care is not taken.
A lucid account of this has been given by Toms [20].

We will now briefly go over the essence of the Vilkovisky–DeWitt (V–D) procedure
before using it in our calculations. We use DeWitt’s condensed notation [21] here. To start
with, the V–D method considers all the fieldsφi as local coordinates of points on the field
spaceF which is an infinite-dimensional manifold. The classical actionS[φ] is invariant
under the infinitesimal gauge transformations

δφi = Ki
α[φ]δεα (22)

where the infinitesimal parametersδεα characterize the transformation andKi
α are the

gauge transformation generators. It can be shown that the problem of non-invariance of0eff

under reparametrizations in conventional quantum field theory arises because the source
Ji is coupled linearly to the fieldφi . In this connection, see Kunstatter [22]. In the
V–D formalism, this problem is remedied by replacingJi(φi − φ̄i) in the argument of
the exponential in (19) by the geometrical entityJiσ i [φ̄, φ] whereσ i [φ̄, φ] is the tangent
vector atφ̄ to the geodesic connectinḡφ to φ. Furthermore, all the ordinary derivatives
are replaced by covariant derivatives. We work only to one-loop order, and to this order
Vilkovisky’s definition of the effective action coincides with DeWitt’s [20]. From (19) it is
seen that all integrations except that overχ are contained in

I [χ ] =
∫

dµ [φ] exp

{
− 1

h̄

[
S1[φ, χ ] − δ0

δφ̄i
σ i [φ̄, φ]

]}
. (23)

Here again we have used DeWitt’s condensed notation for convenience and denoted all
fields except theχ field by the generic symbolφi (φ̄i denote their expectation values).

In equation (23), we have rewritten the classical action in (5) for the sake of convenience
as

S = S1[φ, χ, Bµ] + S2[χ ] (24)
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where

S1[φ, χ, Bµ] =
∫

dvx

{
1

2
ρ

[
−�+m2+ e2BµB

µ + χ + 3

10

η

λ2
χ2

]
ρ + 1

4
F̄µνF̄

µν

}
S2[χ ] =

∫
dvx

{
− 3

2λ
χ2− 3

5

η

λ3
χ3

}
. (25)

Performing a covariant Taylor expansion ofS1 aboutφ̄i and using (21) yields

I [χ ] = exp

{
− 1

εh̄

[
S1[φ̄i , χ ] + εh̄

2
ln detS1

;i
j

]}
(26)

whereS1[φ̄, χ ] is then = 0 term in the covariant Taylor series expansion ofS1[φi, χ ]. The
covariant derivativeS;ij [φ] of S[φ] is defined as

S;ij [φ] = gik(S,kj − 0̄mkjS,m) (27)

wheregij [φ] is the metric on the field space,Sm stands for the functional derivativeδS/δφm,
and 0̄mkj denotes the Christoffel connection for the orbit spaceF/G:

0̄kij = 0kij − 1
2g

km[γ αβKαjKβm,i + γ αβKαiKβm,j − (γ αβKαiKβj ),m]. (28)

γαβ is the metric on the group spaceG and is defined as

γαβ = Ki
α[φ]gij [φ]Kj

β [φ]. (29)

0kij stands for the connection for the field space metricgij . It may be noted that in order
to show that then = 1 term in the series expansion ofS1 cancelled with the source term
in (23), it is neither necessary to assume thatφ̄ is a solution to the classical equations of
motion, nor even that it is close to a classical solution [23].

SubstitutingI [χ ] back into (19), we obtain using (25)

F [χ ] = 1

h̄

[
K(χ − χ̄)+ 1

2
ρ̄

(
−�+m2+ e2B̄µB̄

µ + χ + 3

10

η

λ2
χ2

)
ρ̄ + 1

4
F̄µνF̄

µν

− 3

2λ
χ2− 3

5

η

λ3
χ3+ εh̄

2
(ln detS1;ij (χ))B̄ρ̄

]
. (30)

Making the assumption that we can perform a Taylor series expansion ofF [χ ] aboutχ0

whereχ0 corresponds to that value ofχ for which F [χ ] is stationary,

F ′[χ0] = 0 (31)

where the prime denotes a functional derivative with respect toχ , we get

0eff[φ̄, χ̄ ] = −εh̄ ln
∫

dχ exp

{
− 1

ε

[
F [χ0] + 1

2
F ′′(χ − χ0)

2+ 1

6
F ′′′(χ − χ0)

3+ · · ·
]}
.

(32)

This simplifies to

0eff[φ̄, χ̄ ] = h̄F [χ0] + εh̄
2

ln det

(
F ′′[χ ]

2

)
χ=χ0

+ · · · (33)

whereF [χ0] stands forF [χ0, χ̄ ] and in the second term above we have retained only those
terms ofF which are quadratic inχ . The stationarity condition (31) helps us to determine
the value of the sourceK to be

K = 9η

5λ3
χ2

0 +
3

λ
χ0− 1

2

(
1+ 3η

5λ2
χ0

)
ρ̄2− εh̄

2

{
δ

δχ
(ln detS1

;i
j (χ, B̄, ρ̄))

}
χ=χ0

. (34)
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Upon doing theχ integration we obtain finally

0eff[φ̄, χ̄ ] = 1

2
ρ̄

(
−�+m2+ χ0+ e2BµB

µ + 3η

10λ2
χ2

0

)
ρ̄ + εh̄

2
(ln detS1;ij (χ0, B̄, ρ̄))

− 3

2λ
χ2

0 −
3η

5λ3
χ3

0 +
1

4
F̄µνF̄

µν +K(χ0− χ̄)

+εh̄
2

ln det

(
3η

10λ2
ρ̄2− 3

λ
− 18η

5λ3
χ0

)
+ · · · . (35)

For the action (5), the components of the generators of the gauge transformation may be
obtained from (22):

Kρ(x)
x ′ = 0 Kθ(x)

x ′ = eδ(x, x ′)
KAµ(x)

x ′ = −∇µδ(x, x ′) Kχ(x)
x ′ = 0. (36)

Note thatχ are gauge-invariant fields. It is seen that the components of the field-space
metric are given by

gρ(x)ρ(x ′) = δ(x, x ′) gθ(x)θ(x ′) = ρ2(x)δ(x, x ′)
gAµ(x)Aν(x ′) = gµν(x)δ(x, x ′). (37)

The uncondensed notation used here is that followed by Kunstatter [24].
Since theχ field is gauge invariant, it does not contribute at all either to the field-space

or to the orbit-space connections. It can be explicitly shown that the non-zero components
of the Christoffel connection in the orbit spaceF/G relevant to us are

0̄
ρ(x)

Bν(x ′)Bλ(x ′′) = −e2ρ(x)∇′νγ x ′x∇′′λγ x ′′x

0̄
Bµ(x)

ρ(x ′)Bλ(x ′′) = ∇µ
(

1

ρ(x)
δ(x, x ′)∇′′λγ x ′′x

)
. (38)

Here,γ xx
′

satisfies

[−�x + e2ρ2(x)]γ xx
′ = δ(x, x ′) (39)

and is the inverse of the group space metricγxx ′ defined in (29). The covariant derivatives in
(38) operate only on the first argument inγ xy . The procedure which now follows to evaluate
ln detS1;i j is similar in spirit to that in [25] where the V–D procedure was discussed forφ4

theory. As in the usual effective potential calculations, we set the fieldsρ̄ = ρ = constant
and the background field̄Bµ = 0. After some amount of work, it can be shown that

ln detS1;i j = ln det

(
−�+m2+ χ + 3η

10λ2
χ2

)
+ ln det[(−�+ e2ρ2)gµν + Rνµ].

− ln det(−�+ e2ρ2)+ ln det[δµνδ(x, x
′)+ Pµν(x, x ′)]. (40)

We have arrived at this result after making use of the fact that the Faddeev–Popov factor
cancels with the factor arising from the functional integration overθ , in the measure [26].
The quantityPµν is given by

Pµν(x, x
′) = ve2ρ2

∫
dvy dvz G

µ
λ(x, z)∇λzγ zy∇′νγ yx ′

(
m2+ χ(y)+ 3η

10λ2
χ2(y)

)
(41)

where the Green functionGµ
ν(x, y) satisfies

((−�+ e2ρ2)gµλ +∇λ∇µ)Gλν(x, y) = δµνδ(x, y). (42)
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Further simplification leads to the result

ln detS1;i j = ln det

[
µ−2

(
−�+m2+ χ + 3η

10λ2
χ2

)]
+ ln det[µ−2((−�+ e2ρ2)gµν + Rνµ)]
−3 ln det[µ−2(−�+ e2ρ2)] + ln det[µ−2(−�+ e2ρ2+ b1)]

+ ln det[µ−2(−�+ e2ρ2+ b2)] + Tr
∞∑
n=1

(−1)n+1

n
f (n) (43)

where

b1 = v

2

(
m2+ χ + 3η

10λ2
χ2

)1/2{(
m2+ χ + 3η

10λ2
χ2

)1/2

+
(

4e2ρ2+m2+ χ + 3η

10λ2
χ2

)1/2}
b2 = v

2

(
m2+ χ + 3η

10λ2
χ2

)1/2{(
m2+ χ + 3η

10λ2
χ2

)1/2

−
(

4e2ρ2+m2+ χ + 3η

10λ2
χ2

)1/2}
(44)

and f (n) are terms all of which contain spacetime (covariant) derivatives ofχ . The f (n)

arise from the last term on the right-hand side of (40). The quantityµ has dimensions of
mass and has been inserted to make the arguments of the logarithms dimensionless. The
factor v takes the value 1 in the V–D approach and zero in conventional quantum field
theory.

We now evaluate all the terms of the form ln det(−�+m2+Q) in the expression above
using the generalized zeta-function technique [27]. One can show that

ln det[(−�+m2+Q)µ−2] = −ζ ′(0)+ µ−2ζ(0) (45)

where the generalized zeta functionζ(s) is defined as

ζ(s) =
∞∑
n=1

λ−sn (46)

which may also be written as

ζ(s) = 1

0(s)

∫ ∞
0

dτ τ s−1 e−m
2τK(τ) (47)

whereλn are the eigenvalues of the operator(−�+Q). The heat kernelK(τ) has a known
asymptotic expansion of the form

K(τ) ∼ (4πτ)−d/2
∞∑
k=0

τ k
∫

dvx trEk(x) (48)

in the limit τ → 0, whereEk(x) are known coefficients, known in the literature as Gilkey
coefficients [21, 28]. Using (48) in (47), we can evaluate all but the last term in (43) by
making an expansion in powers of the curvature. Our calculations have been carried out up
to third order in the curvature.

It is well known that in three-dimensional spacetime the Riemann curvature tensor can
be expressed in terms of the Ricci tensor, as they both have the same number (six) of
algebraically independent components:

Rαβγ δ = gαγRβδ + gβδRαγ − gαδRβγ − gβγRαδ + 1
2R(gβγ gαδ − gβδgαγ ). (49)
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Using these results we obtain after a little work

ln detS1
;i
j (x, ρ) = Tr

∞∑
n=1

(−1)n+1

n
f (n) − 1

8π

∫
dvx tr

{
4

3

(
m2+ χ + 3η

10λ2
χ2

)3/2

+4

3
[(e2ρ2+ b1)

3/2+ (e2ρ2+ b2)
3/2] + R

(
2eρ − 1

3

(
m2+ χ + 3η

10λ2

)1/2

−1

3
[(e2ρ2+ b1)

1/2+ (e2ρ2+ b2)
1/2]

)
+
(

1

40
R2+ 1

60
RµνR

µν + 1

30
�R

)
×
[

1

(m2+ χ + (3η/10λ2)χ2)
1/2 +

1

e2ρ2
[(e2ρ2+ b1)

1/2+ (e2ρ2+ b2)
1/2

]

]
+
[

1

2(m2+ χ + (3η/10λ2)χ2)
3/2 +

1

(e2ρ2)
3 [(e2ρ2+ b1)

3/2

+(e2ρ2+ b2)
3/2

]

]
E3c

+ 1

eρ

(
−R

2

3
+ 1

6
RµνR

µν − 1

6
�R

)
+ 1

2(eρ)3
E′3+ · · ·

}
(50)

where

E3c = 1

7!

[
18�2R − 10R;µR;µ + 34Rµν;ρRµν;ρ − 4Rµν;ρRµρ;ν + 24RµνR

µρ;ν
ρ

+16R�R − 32Rµν�Rµν − 9R3+ 118RRµνR
µν − 6928

90
Rµ

αRα
βRβ

µ

]
E′3 = 1

30
R;αR;α − 1

60
Rµλ;αRλµ;α + 1

90
Rγα;βRβα;γ − 1

180
Rγ

β
;βR
;γ − 1

180
R;βRβγ

;γ

− 4

45
R3+ 1

10
Rµα�Rαµ − 1

90
RαβR;αβ − 1

60
�2R − 17

180
R�R

+1

9
RµαR

α
βR

β
µ + 43

180
RRµνR

µν. (51)

In order to express the effective action for the scalar field as a function ofφ̄ only, it is
necessary to eliminate the auxiliary field̄χ . A possible way of achieving this is by setting
the sourceK in the effective field equations (9) to zero. From (34) we then obtain the
equation

9η

5λ3
χ2

0 +
3

λ
χ0− 1

2

(
1+ 3η

5λ2
χ0

)
ρ2− εh̄

2

(
δ

δχ
(ln detS1

;i
j (χ, ρ))

)
χ=χ0

= 0. (52)

Although one can obtain a solution forχ from here as a power series inε, we solve forχ
only to lowest order inε, for the sake of simplicity, and consider the root

χ0 = λ

6
ρ2. (53)

Substituting forχ0 from here into0eff in (35), we obtain with the help of (34), to lowest
order inε,

0eff
(0)[φ̄] = 1

2
m2ρ2+ λ

24
ρ4+ η

720
ρ6. (54)

Thus the tree-level and lowest-order result inε coincides with the classical action we started
with.
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It is interesting to note that the equivalence of the Lagrangians (5) and (4) up to zeroth
order in εh̄ can be shown in the following alternative manner, starting from our result for
the effective action (equation (35)).

χ̄ occurring in theK term in equation (35) can be found from (8), and by making a
Taylor expansion in (7) about the valueχ0 of χ , where we have definedχ0 in (31). This
gives

χ̄ = −εh̄ δ lnZ

δK
= χ0+O(εh̄) (55)

where O(εh̄) denotes terms which are of order one and higher inεh̄. Substituting this back
into (35), we obtain

0eff[φ̄, χ̄ ] = 1

2
ρ̄

(
−�+m2+ χ0+ e2BµB

µ + 3η

10λ2
χ0

2

)
ρ̄ + εh̄

2
(ln detS1;ij (χ0, B̄, ρ̄))

− 3

2λ
χ2

0 −
3η

5λ3
χ3

0 +
1

4
F̄µνF̄

µν +K ·O(εh̄)

+εh̄
2

ln det

(
3η

10λ2
ρ̄2− 3

λ
− 18η

5λ3
χ0

)
+ · · · . (56)

Collecting together from here all terms which are zeroth order inεh̄, one can try to generate
the Green functions for theφ-theory (with externalφ lines) from the integral

Z[J,K] = exp

{
− 1

εh̄
W [J ]

}
=
∫

dµ[ρ] dµ[χ ]

× exp

{
− 1

εh̄

∫
dvx

[
1

2
ρ(−�+m2+ BµBµ)ρ + 1

4
F̄µνF̄

µν + Jρ
]}

× exp

{
− 1

εh̄
U [ρ, χ ]

}
(57)

where

U [ρ, χ ] =
∫

dvx

{
− 3

2λ
χ2− 3η

5λ3
χ3+ ρ

2

2
χ + 3η

20λ2
χ2ρ2

}
. (58)

One can perform a Taylor expansion ofU [ρ, χ ] about the valuesχ± of χ as before

U [ρ, χ ] = U [ρ, χ±] + δU
δχ

∣∣∣∣
χ±
(χ − χ±)+ 1

2

δ2U

δχ2

∣∣∣∣
χ±
(χ − χ±)2+ 1

6

δ3U

δχ3

∣∣∣∣
χ±
(χ − χ±)3+· · ·

(59)

whereU satisfies the stationarity condition

δU

δχ
= 0 (60)

for the valuesχ± of χ . The rootsχ± are given by

χ± =
(
λρ2

12
− 5λ2

6η

)
± 1

2

(
λρ2

6
+ 5λ2

3η

)
. (61)

We choose the positive rootχ+ = λρ2/6 which after substitution into (59) gives

U [χ, ρ] = λρ4

4!
+ ηρ

6

6!
− 3η

10λ3

(
λρ2

2
+ 5λ2

η

)
(χ − χ+)2− 3η

5λ3
(χ − χ+)3+ · · · . (62)

As before, performing the shift in theχ variableχ − χ+ → χ , and substitutingU [χ, ρ]
back into (57) results in the expression (18).
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When the scalar fieldφ has a large (N ) number of components, the replacements
λ → λ/N and η → η/N2 in (4) would yield the classical Lagrangian for the theory. In
this case, it is easy to check by repeating the above line of reasoning that we would obtain

Z[J ] =
∫

dµ[φ] exp

{
− 1

εh̄

∫
dvx

×
[

1

4
F̄µνF̄

µν + 1

2
φ(−�+m2+ e2BµB

µ)φ + λ

4!

φ4

N
+ ηφ6

6!N2
+ Jφ

]}
×
∫

dµ [χ ] exp

{
− 1

εh̄

∫
dvx

1

(1/N)

×
[
− 9η

10λ3

(
λρ2

6N
+ 5λ2

3η

)
χ2− 3η

5λ3
χ3+ · · ·

]}
. (63)

Thus it is seen that theφ integral alone generates the Green functions forφ6 theory, while
the extra terms generated by theχ integral lead to an expansion in powers of 1/N .

It was explained in [17] forφ6 theory that the limitN → ∞ corresponds to the limit
ε → 0. We have thus been able to show that the originalφ6 theory is regained at least to
a first approximation, i.e. if the contributions from theχ integral which are next to leading
order in 1/N are ignored.

We shall now consider symmetry breaking. Townsend [14] observed that symmetry
breaking forφ6 theory occurs for three cases: (1)λ > 0, m2 < 0, (2) λ < 0, m2 < 0, and
(3) λ < 0, m2 > 0, provided the parametersλ,m2, andη were restricted to certain values.
We consider first the case for whichm2 > 0 andλ < 0. Substituting the value ofχ0 from
(52) into (35) and making the replacementλ→−λ′, we find that apart from constants

0eff[φ̄] = 1

2
m2ρ2− λ

′

4!
ρ4+ η

6!
ρ6+ εh̄

2

[
Tr ln

(
1− η

10λ′
ρ2
)
+ ln detS1

;i
j [ρ]

]
(64)

where

ln detS1
;i
j [ρ] = − 1

8π

∫
dvx Tr

{
4

3

(
m2− λ

′

6
ρ2+ η

120
ρ4

)3/2

+4

3
[(e2ρ2+ a1)

3/2+ (e2ρ2+ a2)
3/2

]

+R
(

2eρ − 1

3

(
m2− λ

′

6
ρ2+ η

120
ρ4

)1/2

−1

3
[(e2ρ2+ a1)

1/2+ (e2ρ2+ a2)
1/2

]

)
+
(
R2

40
+ 1

60
RµνR

µν + 1

30
�R

)(
1

(m2− (λ′/6)ρ2+ (η/120)ρ4)1/2

+ 1

e2ρ2
[(e2ρ2+ a1)

1/2+ (e2ρ2+ a2)
1/2

]

)
+
(

1

2(m2− (λ′/6)ρ2+ (η/120)ρ4)3/2

+ 1

(e2ρ2)
3 [(e2ρ2+ a1)

3/2+ (e2ρ2+ a2)
3/2

]

)
E3c

+ 1

eρ

(
−R

2

3
+ 1

6
RµνR

µν − 1

6
�R

)
+ 1

2(eρ)3
E′3+ · · ·

}
(65)
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a1 = v

2

(
m2− λ

′

6
ρ2+ η

120
ρ4

)1/2 [(
m2− λ

′

6
ρ2+ η

120
ρ4

)1/2

+
(

4e2ρ2+m2− λ
′

6
ρ2+ η

120
ρ4

)1/2 ]
a2 = v

2

(
m2− λ

′

6
ρ2+ η

120
ρ4

)1/2 [(
m2− λ

′

6
ρ2+ η

120
ρ4

)1/2

−
(

4e2ρ2+m2− λ
′

6
ρ2+ η

120
ρ4

)1/2 ]
. (66)

It is seen that thef (n) terms in (50) containing derivatives of theχ fields do not contribute
for constantχ . It is clear that in this case the requirement that the perturbative expansion of
the effective potential be well defined restricts the range of the parameters toλ′ > ηρ2/10
andm2 > ηρ4/60. We also find that the mean-field perturbation theory technique used
here does not give satisfactory and consistent results for the case whenm2 is negative,
for the specific theory we have considered. It should be emphasized that the choice of
the Lagrangian (5), which expresses the originalφ6 theory in (4) in terms of the auxiliary
composite fieldχ , is by no means unique. There exist families of Lagrangians written in
terms ofχ to which the theory in (4) is equivalent.

3. Discussion

Our attempt has been to include contributions from all saddle points of the scalar field
through the auxiliary mean-field-theory approach to obtain a result in curved spacetime
which is reparametrization invariant, gauge invariant and gauge condition independent, both
on as well as off the mass shell, by adopting the Vilkovisky–DeWitt procedure. Our method
of inclusion of the saddle-point contributions by performing theφ integration first differs
from the method followed in [14]. Since we have considered a gaugedφ6 theory, our result
(35) also contains the vector contributions to the effective potential. The extra terms in our
final result arising because of our procedure also include the Vilkovisky terms (those terms
which are multiplied by the factorv) which are necessary to ensure that the same result
is obtained in all gauges. We have performed a local expansion in powers of the inverse
effective mass and obtainedχ in terms ofφ only to the lowest order inε. Calculation of
non-local terms in the effective action can be performed following the approach in [29]. It
would be interesting to see the effect of the O(ε) terms ofχ in the effective action in broken
symmetry situations. In these situations, terms containing derivatives of the scalar field and
of the fieldχ (for instance, in thef (n) terms) would become important, particularly if the
background spacetime is non-trivial. An elegant way of calculating the gradient terms in
the effective action has been described in [30]. This work takes inspiration from the work
of Bunch and Parker [31], who use Riemann normal coordinates to obtain a momentum
space representation of the Feynman propagator for quantum fields in curved space. We
have limited ourselves only to the constant (non-derivative) terms of the effective action,
as the calculations become too involved and cumbersome otherwise.

Acknowledgments

We are grateful to Dr D J Toms for going through the manuscript and for very helpful
comments JB would like to thank Professor Ashok Das for informing her about [5]. Most
of this work was made possible with support some time ago from CSIR, New Delhi, India,
which JB would like to acknowledge.



Effective potential forφ6 theory in 3D curved spacetime 4011

References

[1] Heisenberg W and Euler H 1936Z. Phys.98 714
Weisskopf V 1936K. Danske Vidensk. Selesk. Mat. -fys. Medd.14 6
Schwinger J 1951Phys. Rev.82 664
Goldstone J, Salam A and Weinberg S 1962Phys. Rev.127 965
Jona-Lasinio G 1964Nuovo Cimento34 1790

[2] Dittrich W and Reuter M 1985Effective Lagrangians in Quantum Electrodynamics (Lecture Notes in Physics
220) (Berlin: Springer)

[3] Parker L 1979Recent Developments in Gravitation (Cargese 1978 Lectures)ed M Levy and S Deser
(New York: Plenum)

[4] Adler S L 1982Rev. Mod. Phys.54 729
[5] David F 1984Phys. Lett.138B 383
[6] Vilkovisky G A 1984Nucl. Phys.B 234 125
[7] DeWitt B S 1987Quantum Field Theory and Quantum Statisticsed I A Batalin, C J Isham and G A Vilkovisky

(Bristol: Adam Hilger)
[8] DeWitt B S 1981Quantum Gravity IIed C J Isham, R Penrose and D W Sciama (Oxford: Oxford University

Press)
[9] Burgess C P and Kunstatter G 1987Mod. Phys. Lett.A 2 875

[10] Symanzik K 1970Commun. Math. Phys.16 48
[11] O’Raifeartaigh L and Parravicini G 1976Nucl. Phys.B 111 501
[12] Stevenson P M 1985Phys. Rev.D 30 1712
[13] Balakrishnan J and Moss I G 1994Phys. Rev.D 49 4113
[14] Townsend P K 1975Phys. Rev.D 12 2269

Townsend P K 1976Phys. Rev.D 14 1715
Townsend P K 1977Nucl. Phys.B 118 199

[15] Giddings S, Abbott J and Kuchar K 1984Gen. Rel. Grav.16 751
[16] Deser S, Jackiw R and ’t Hooft G 1984Ann. Phys.152 220
[17] Bender C M, Cooper F and Guralnik G S 1977Ann. Phys.109 165

Bender C M and Cooper F 1983Nucl. Phys.B 224 403
Cooper F, Guralnik G S and Kasdan S 1976Phys. Rev.D 14 1607

[18] Dolan L and Jackiw R 1974Phys. Rev.D 9 2804
[19] Cornwall J M, Jackiw R and Tomboulis E 1974Phys. Rev.D 10 2428
[20] Toms D J 1988Proc. 2nd. Canadian Conf. on General Relativity and Relativistic Astrophysicsed A Coley,

C Dyer and T Tupper (Singapore: World Scientific)
[21] DeWitt B S 1965Dynamical Theory of Groups and Fields(New York: Gordon and Breach)
[22] Kunstatter G 1991Gravitation: A Banff Summer Instituteed R Mann and P Wesson (Singapore: World

Scientific)
[23] Toms D J 1995 Private communication
[24] Kunstatter G 1987Super Field Theories (Proc. NATO Study Institute, Vancouver, Canada, 1986) (NATO ASI

Series B 160)ed H C Leeet al (New York: Plenum)
[25] Balakrishnan J and Toms D J 1992Phys. Rev.D 46 4413
[26] Russell I H and Toms D J 1989Phys. Rev.D 39 1735
[27] Hawking S W 1977Commun. Math. Phys.55 133
[28] Gilkey P 1975J. Diff. Geom.10 601
[29] Parker L and Toms D J 1985Phys. Rev.D 31 953

Parker L and Toms D J 1985Phys. Rev.D 31 3424
Jack I and Parker L 1985Phys. Rev.D 31 2439

[30] Moss I G, Toms D J and Wright A 1992Phys. Rev.D 46 1671
[31] Bunch T S and Parker L 1979Phys. Rev.D 20 2499


